

URS

URS Tier 4 Aggregate Risk Modeling

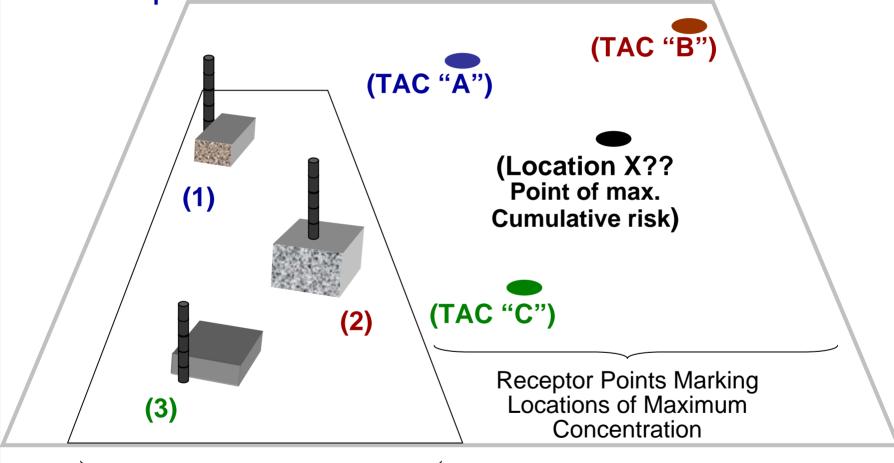
"QUASAR":

<u>Quantitative URS Approach to STAR</u>

<u>Aggregate Risk</u>

APCD Workshop #102

Presenter: Todd Royer
Thursday
March 16, 2006



Risk Goals vs. Model Output

- The Aggregate Risk Modeling Challenge
 - STAR Requires Demonstrating Compliance with Risk Goal for Cumulative Risk of Multiple TACs/Multiple Release Points
 - Tier 4 Models <u>Not</u> Designed to Consider Multiple Pollutant/Stack/Risk Simultaneously
- Tier 4 (ISC/AERMOD) Model Capabilities/Characteristics
 - Designed to model one pollutant (TAC) per "run"
 - Single or Multiple Release Points
 - Model Output = Ambient Concentration (not Risk)
 (Risk = ground level concentration divided by BAC)

Example Locations of Maximum Concentration

Emission Sources

URS Approach to Rigorously Determine Cumulative Risk

- URS's "Risk-Adjusted" Approach: "QUASAR"
 - Manipulate Model Input to let the Model <u>Directly</u> Determine the Maximum Cumulative Risk and its Location
 - Step 1: For each emission point: Convert the emission rate of each TAC emitted to a "risk-adjusted" emissions rate (based on a standardized surrogate TAC).
 - Step 2: For each emission point: Sum the standardized "risk-adjusted" emission rates to yield a single, total stack "risk-adjusted" emission rate.
 - Step 3: Run Tier 4 model with "risk-adjusted" emissions rate from each stack.
 - You're done Model output directly identifies Max. Cumulative Risk and Location
 - Methodology is Easy to Do

URS Method "QUASAR"

How and Why it Works! - Risk Modeling Theory

- Tier 4 Models are Just Mathematical Functions
 - Model Output = f(emission rate, release height, ACFM, exh. temp., etc)
- For Each Release Point (& a given set of release parameters)

Model output is proportional to model input. For Emissions Rate:

Double the input (g/s emiss. rate) yields double the output (Conc., μg/m3)

- 2 g/s (Model Input) Model 1 μg/m³ (Model Output)
- 4 g/s (Model Input) Model 2 μg/m³ (Model Output)
- Conventionally Risk Calculated Based on Model Output
 - 4 g/s Model 2 μ g/m³ ÷ 2 μ g/m³ (BAC_c) = 1.0 (Risk, 10⁻⁶)
- Alternatively Divide Input by BAC_c to Model Risk Directly
 - 4 g/s ÷ 2 μ g/m³ (BAC_c) = 2 $\frac{g/s}{\mu g/m}$ ³ (Surr. Input) $\frac{\textit{Model}}{}$ 1.0 (Risk, 10⁻⁶)

Single Stack Example

QUASAR Modeling Approach – Multiple TACs (Single Stack)

TAC	Emission Rate (g/s)	BAC (μg/m³)		"Risk-Adjusted" Rate Model Input (g/s/ µg/m ³)	Maximum Cumulative Risk Model Output (10-6)
Α	2.0	÷ 20	=	0.1	
В	1.0	÷ 100	=	0.01	
С	0.02	÷ 1.0	Ш	0.02	
				0.13 <u>Model</u>	0.65

Key Principal:

Dividing an actual TAC emissions rate by its BAC_c yields a number equivalent to emissions rate of a "hypothetical" TAC with a BAC_c of 1 μg/m3 with a risk equivalent to actual TAC emissions.

URS Approach

- Effect is to Reduce Multiple TAC Emission Rates into a Single Surrogate "Risk-Adjusted" Emission Rate for each Source
- Surrogate Rate Takes into Account Relative Toxicity
- Model Output is Maximum Cumulative Risk

Single Stack Example

Single Stack - Multiple TACs - Method Comparison

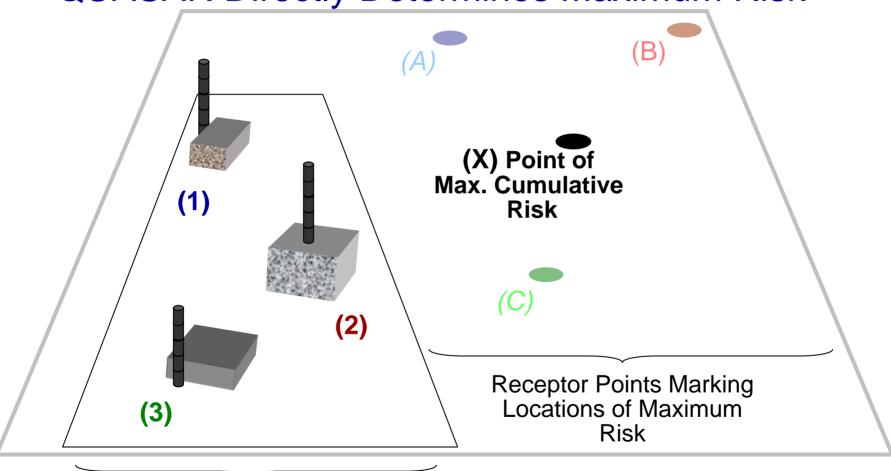
TAC	Emission Rate (g/s)	BAC (μg/m³)	u	"QUASAR" Risk-Adjusted" Rate Model Input (g/s/ _{µg/m} 3)	Maximum Cumulative Risk Model Output (10-6)
Α	2.0	÷ 20	-	0.1	
В	1.0	÷ 100		0.01	
С	0.02	÷ 1.0	=	0.02	
				Total = 0.13 Mode	0.65

Conventional Method:

TAC	Emission Rate Model Input (g/s)	Max Concentration Model Output (μg/m³)	BAC (μg/m³)	Risk (10 ⁻⁶)
Α	2.0 <u>Model</u>	10.0	÷ 20	0.5
В	1.0 Model	5.0	÷ 100	0.05
С	0.02 Model	0.1	÷ 1.0	0.1
Co	0.65			

Multiple Stack Example

Multiple Stack - "Risk-Adjusted" Emission Rate


Stack	"Risk-Adjusted" Rate Model Input (g/s/ _{μg/m} 3)	Risk Model Output (10 ⁻⁶)	
1	0.13	(Point A)	0.65
2	0.01	(Point B)	0.05
3	0.02	(Point C)	0.10
	Sum of Individual Max Risks:		0.80
Maxim	(Point X)	0.68	

URS's "QUASAR" Approach:

- Calculate a Surrogate "Risk-Adjusted" Emission Rate Based on BAC_c for Each Release Point
- Use Surrogate "Risk-Adjusted" Emission Rate as the Single Pollutant in the Model
- Model Directly Yields:
 - ✓ Maximum Cumulative Risk Impact from all Release Points

QUASAR Directly Determines Maximum Risk

Emission Sources

Summary

- STAR Requires Demonstrating Compliance with Risk Goal for Cumulative Risk of Multiple TACs/Multiple Release Points
- URS "Risk-Adjusted" Emissions Rate Approach:
 - Calculate a Surrogate "Risk-Adjusted" Emission Rate Based on BAC_c for Fach Release Point
 - Use Surrogate "Risk-Adjusted" Emission Rate in a Single Pollutant Model
 - Model Directly Yields Maximum Cumulative Risk Impact from all Release Points and all TACs
- URS "QUASAR" Methodology:
 - Minimal Data Manipulation Needed Simple Spreadsheet
 - Model Output Yields Maximum Cumulative Risk Directly

Future Questions: Todd Royer (502) 217-1511

Jim McDonald (502) 217-1503